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Junction conditions for Sen's theory in Lyra's geometry are considered. It is 
proposed that for any gauge function the standard O'Brien-Synge and Lich- 
uerowicz junction conditions should be supplemented by demanding continuity 
of the displacement vector across the interface. A class of internal solutions of 
the Sen equations with a source term given by the energy-momentum tensor of 
a one-component perfect fluid with the ultrarelativistic equation of state that is 
expressible in terms of Bessel functions is proposed. The internal solution is 
regularly matched by means of the junction conditions to the exterior solution. 
The resulting two-parameter solution is globally non-Euclidean. 

1. INTRODUCTION 

Modifications and extensions of general relativity have intrigued theo- 
rists for a long time. One of the most important motivations for studying 
this group of problems is the attempt to construct reasonable cosmological 
models which, while possessing desired features such as symmetry and 
physical characteristics of the fields and matter, are free from the puzzles 
and singularities of standard cosmology. 

Einstein himself very early considerably changed the original 1915 
gravitational field equations by adding a so-called "cosmological term," 
which since that time has periodically appeared and disappeared in physics, 
having its most spectacular comeback in the inflationary model. 

Over the past 70 years many studies have been carried out to fulfill the 
great vision which has its roots in the works of Riemann and Clifford--to 
unify all interactions in a purely geometrical way. Among them, one that 
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appeared almost simultaneously with the Einstein theory (Weyl, 1918) 
received considerable attention. Although Weyl's efforts to unify gravita- 
tional and electromagnetic phenomena by means of the fundamental 
changes of the Riemannian geometry missed the target and were early 
recognized as unsatisfactory, his approach contains deep and fruitful ideas: 
the beginnings of the general theory of connections and the conception of 
a gauge invariance. 

On the basis of an interesting generalization of the Riemannian 
geometry, which may be also considered as the modification of the Weyl 
geometry, invented by Lyra (1951) to overcome the nonintegrability of 
length transfers, a generic and principal difficulty of the Weyl theory, Sen 
(1957) constructed an analog of the Einstein gravitational field equations. 
In the Lyra geometry Weyl's concept of "Eichinvarianz," which is a purely 
metrical concept, is modified by introducing a gauge function into the 
structureless manifold. Roughly speaking, in a Lyra geometry one intro- 
duces another type of covariance; the gauge covariance and the choice of a 
gauge function as well as the choice of coordinate system are arbitrary. It 
should be noted, however, that unlike the Weyl geometry, in the Lyra 
geometry tensors (treated as multilinear mappings) transform under the 
action of gauge transformations with zero weight, while the base vectors 
and one-forms transform with the weight 1 and - 1 ,  respectively. 

One method of constructing global solutions in general relativity is to 
match two solutions that correspond to two different physical situations. 
The junction conditions in general relativity have been subjected to ex- 
haustive analysis by a number of workers (O'Brien and Synge, 1952; 
Lichnerowicz, 1955; Israel, 1958, 1966; Synge, 1960; Nariai, 1965), Unfor- 
tunately, although the Sen theory and its more recent generalizations (Sen, 
1968; Sen and Vanstone, 1972) have received considerable attention in the 
cosmological context and although many interesting solutions both with 
and without a source term have been presented and studied (Sen, 1957; 
Halford, 1970; Bhamra, 1974; Beesham, 1986a,b, 1988; Ram and Singh, 
1992; Singh and Agrawal, 1992; Singh and Singh, 1991, 1992), little is 
known about the global solutions obtained by means of matching the 
internal solution to the external one [see, however, Matyjasek and Rogatko 
(1992)]. It would be fair to say that this is a common situation in 
alternative theories. It is interesting therefore to examine more closely this 
group of problems. 

In this paper we shall consider boundary conditions at a 3-space of 
discontinuity (interface) in Lyra geometry in the spirit of O'Brien and 
Synge and of Lichnerowicz and subsequently illustrate the procedure in the 
particular problem of static fluid distributions that have reasonable physi- 
cal characteristics in a space possessing cylindrical symmetry. 
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The paper  is organized as follows: in Section 2 we present the 
necessary mathematical  background; the more complicated formulas are 
relegated to Appendix A. Since here we are addressing a specific group of 
problems, it should be noted that our definitions of  the Lyra differentiable 
manifold and structures constructed on it are weaker than those usually 
encountered in the literature. Section 3 deals with the Sen equations in the 
normal gauge. The projective structure is investigated in Section 4. 
Boundary conditions and the proof  of  admissibility of  an analog of the 
Gauss coordinates are presented in Section 5. The application of  the 
O 'Br ien-Synge  and Lichnerowicz junction conditions to the problem of 
static fluid cylinders is analyzed in Section 6. In Appendix B the Sen 
equations that are valid for any gauge function are derived from the 
variational principle. The same equations are obtained by "transforming 
back" the normal gauge Sen equations, which means that they are indeed 
doubly covariant. The relation to the conformally transformed Einstein 
field equations is also considered. 

Finally, this paper corrects some earlier errors that one may encounter 
in the literature on the subject. 

2. LYRA G E O M E T R Y  

To begin we collect some basic information concerning the Lyra 
geometry that will be useful later. Lyra C a manifolds are treated in Sen 
and Dunn (1971) and Sen and Vanstone (1972). 

We assume the space M to be a connected second countable Hausdorff  
space. An essential notion in the Lyra formulation is a reference system. 
The reference system on M is a triple (Ui, ~i, Xi), where: 

1. U,. is an open subset of  M. 
2. ~i is a homeomorphism of Ui onto an open subset of  R". 
3. Z~: U ~ R \ { 0 }  is a gauge function. 

A C k Lyra manifold is M with a collection of  reference systems that 
cover M and such that the maps ~ o ~ 7  ~ and gauge functions Z~ ~ ~71 are 
C k" 

A C k differentiabte curve on a Lyra manifold is a mapping 
7: I c R ~ M  such that ~ o 7: R--*R" is C k. One can introduce a tangent 
vector in the usual manner. I f  we assume that the homeomorphism ~ is 
given by functions x", the natural basis for a tangent space is given by 
e,  = Z -1 ~/t3x ~ rather than ~/t3x~, so that the tangent vector X e T p  can be 
written as X = XUe~. 

Elements of  the cotangent space T* are linear functions from Tp ~ R. 
Basis 1-forms are given by the condition e~(ev) = 6~ and hence e" = ~ dx ~. 
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The inner product 

is defined by 
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( . , . ) :  r~ • r~ - .R  (1) 

(2) 

A tensor of  type (r, s) is a multilinear mapping of  r copies of  T~ and 
s copies of  Tp into R: 

T: T*  x T~  x . . . x T*  x Tp x Tp x . . . • T p - .  R (3) 

Let T~.p denotes the set of  type (r, s) tensors. An element t of  T~s,p may be 
exhibited as 

t ~ t v l ' ' ' v s  pl~l  
_ la 1...11 r v 

Under the transformation 
components of  a tensor of  type 

F.,.-..r = f i r - .  
V I ""Vs 

where 

�9 " | 1 7 4  ' |  k (4)  

to a new reference system (U, if, ;~) the 
(r, s) transform according to 

~ X  Itr O x ~ l  O X  ~s 

'~'~" (5) 
#x ~, a ~ ,  0~7~, ~ c~. 

(6) 

A C ~ linear connection V on the C k Lyra manifold (k -> r + 2) is a 
mapping X ~ VX from the C k -  1 vector field X to a C k -  2 tensor field of  
type (1, 1) such that 

V(X + Y) = VX + VY (7) 

V f X  = d f  | X + f V X  (8) 

The C r (r < k - 1) metric tensor g is a symmetric tensor field of  type 
(0, 2) on M, and in the natural basis it has the following form: 

g = g u v e U |  v (9) 

In the further applications we shall require the Lyra manifold to be C 4 
except at interfaces, where class C 2 is assumed. Therefore the metric tensor 
is taken to be C 3 and only C 1 at the interface. 

There is a unique Lyra connection LV x defined as 

L V x Y  = <VY, X> (10) 

satisfying condition of  metricity 

L V x g  = 0 ( 1 1) 
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and with a torsion T(X, Y) given by the following expression: 

1 
T(X, Y ) = L v r x - - L V x Y - - [ X  , Y] = ~  {(~o, X ) Y - - ( c o ,  Y)J(} (12) 

where co is a given Lyra l-form and [X, Y] is a Lie bracket of X and Y (see 
Appendix A). In a local reference system the Lyra connection is specified 
by functions LF~ defined as 

LVe~e~ = LF~r~ e~ (13) 

It can be easily shown that the Lyra connection is 

1 1 6.  
LF}, = ~ RF~, + ~ ( ,~b~ - g~,(b ~) (14) 

where RF}~ is a Riemann connection and 

q~ =co + d ln  2: 2. (15) 

The quantity ~p is the displacement vector. The term d In )~2 under the 
change of  the gauge function transforms according to the rule 

d l n  ~ Z = d l n 2 2  + d l n  z 2 (16) 

and consequently the displacement vector q~ is not a Lyra 1-form. From 
(15) and (16) one readily has 

1( 10 In :) 
~" = i  q~" + (17) 

Z 0 x ~  ] 

From the law of transplantation of base vectors and (13) one con- 
cludes that under change of reference system from (U, ~, Z) to (0,  ~, ~) the 
connection coefficients transform as follows: 

LF~7 ~ _ I A . ~ A v A  z LFv~r 1 ) _~6}AO(ln = - ,~ ).~ ( 1 8 )  

where a comma denotes partial differentiation 

c~x u 
A ~  = Ox ~ (19) 

It is said that a vector Y i~ Lyra transported along a curve V with a 
tangent vector X if 

LVx Y = 0 (20) 

By (11) it follows then that the length transfers are integrable and conse- 
quently the most serious objection to Weyl geometry is removed. Since the 
Lyra manifold is endowed with connection LV, it is possible to introduce a 
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curvature operation p defined as 

p(X,  Y)  : LV X LVy --  LVy LV X --  LV[x,y ] (21) 

The curvature tensor is 4-linear mapping attaching to every 1-form co and 
vectors X, Y, Z a number according to the rule 

LR(co, Z, X, Y) = (co, p(X, Y ) Z )  (22) 

In a local reference system with a natural base vectors and cobase forms 
the mapping R has the following form: 

LR(co, Z, X, Y) = L R~#~e,e ~ | ea | er | e~(o9, Z, X, Y) 

and 

(23) 

LR~/~a = Z ~" }7 7 ? 7  ) + LF~ LF}e -- Lr~a LF}? (24) 

The contracted curvature tensor (an analog of a Ricci tensor) is 
obtained by setting e = 6 in (24), 

LR~#,;~ = LR/~r (25) 

The curvature scalar is 

3 RR 3 RV~q~ + ~ b ~ b ~ + ~ b  ~ (26) LR ----- g ~  LR~B = X-- ~- -t- 

where 

lug 2 
(d  ln z2le~,) =ap~ = Z -1 

Ox ~ 

and the superscript R refers to the Riemannian quantities, d0, 
exactly as qS, and their difference is a Lyra tensor. 

(27) 

transforms 

3. THE SEN EQUATIONS 

In the Lyra geometry one introduces another type of covariance, 
namely the gauge covariance. Since every equality of Lyra tensors may be 
easily converted into equality of the gauge-invariant quantities, one can 
speak equally well of the gauge invariance. Indeed, it suffices to multiply a 
Lyra (p, q) tensor expressed in the gauge Z by a factor x q-p. In what 
follows we shall refer to the gauge covariance rather than invariance. Since 
the choice of the gauge function is entirely optional, we shall work with the 
so-called normal gauge, i.e., Z = 1. 
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On the basis of the Lyra geometry Sen (1957) constructed a theory of 
gravitation whose equations are the consequence of the variational princi- 
ple 

where 

~(/+J) = 0  (28) 

/. 
I = ] L R , , ~  d4x (29) 

J = . fmN~g  d4x (30) 

A is the Lagrangian density of matter and the variation is taken with 
respect to the metric tensor only. The variational principle yields 

3 3 
O,,v + ~ ~b,~b u - ~guv~oq5 = -8rcTuv (31) 

where G~v and Tuv are the Einstein and the energy-momentum tensor, 
respectively. The displacement vector has no clear and unambiguous phys- 
ical interpretation; however, the normal gauge Sen equations closely resem- 
ble the equations of Hoyle and Narlikar (1948). 

Soleng (1987) has pointed out that cosmological models constructed 
within the framework of the Lyra geometry with constant displacement 
vector are either analogous to the theory with creation field or are 
equivalent to the standard cosmologies with nonzero cosmological constant 
and with a special vacuum field. 

The vacuum Sen equations may be rewritten in the following form: 

3 
Ruv = - ~  ~b,,qSv (32) 

If we allow the displacement vector to have a form (0, fl(r), 0, 0) as we shall 
do in what follows because of cylindrical symmetry, equation (32) may be 
rewritten as 

3 2 r r R~,v = -~ fl 6~,rvgrr (33) 

One may therefore formally regard the displacement vector as a quantity 
that generates an analog of the cosmological term that enters the equations 
in an asymmetric way. When the displacement vector is taken to be 
constant the analogy is even more transparent. 

Varying the action integral (28) with respect to the displacement 
vector yields q~ = O, and therefore one has (in a normal gauge) just the 
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Einstein field equations. This and related problems are discussed in Ap- 
pendix B. 

4. THE PROJECTIVE S T R U C T U R E  

A curve 7 on a Lyra manifold is said to be a geodesic if the tangent 
vector to 7 transported parallely in the Lyra connection remains a multiple 
to itself. From this definition one has 

d2xU 2 dx~ dxp 1 dx ~ dx ~ dx ~ 
z~-~ +z Lr~"~ -d2 -d7 + ~ z2*~ -di- -d7 = xO -22 ~ (34) 

where ~b is a proportionality factor. By suitable reparametrization the 
equation for a geodesic may be reduced to the affinely parametrized form: 

d2x" X2 dx ~ dx ~ 1 dx ~ dx"  
z-dP-+ r~"B 27 )S +~ z20~ at a t - o  (35) 

It should be noted that extremal curves obtained from the Fermat 
principle 

d2X~'ds 2 + RF~p-I- (6~*p + 6 } ~ , - g ~ , p ~ " )  ds ds - 0 (36) 

do not coincide with the autoparallels, though they may be regarded, as 
shown by an inspection of equation (14), as autoparallels of the Lyra 
connection with vanishing 1-form ~o. 

Now let us consider when two Lyra connections LV and @ have the 
same geodesics with possible different parametrizations. Such connections 
are said to be projectively equivalent. 

We have the analog of the f~lowing theorem originally due to Weyl 
(1921): two connections LV and LV are projectively equivalent if and only 
if there is unique Lyra 1-form ~ such that 

S(X,  Y )  = ( f~lX) Y + <f~[ Y )  X (37) 

where S(X,  Y)  = 1 L ̂  ~( V x Y  + L V r X  - -  L V x Y  - -  LVyX). 
This theorem may be easily proved by a slight modification of argu- 

ments of the Riemannian case (Spivak, 1979). 
In a local reference system two symmetric Lyra connections 2 are 

projectively equivalent iff 
A 

~r~, = ~r~, + 6~n, + 6~a~ (38) 

2Studying geodesics, it is sufficient to consider the symmetric connections only. 
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It should be emphasized that the difference of the connections is a Lyra 
tensor. Inspection of  equations (35) and (36) shows that connections LF~ua 
and Z-1 RF~a + 1 ( 6 ~ -  g,a~u) are not projectively equivalent unless an 
additional condition is fulfilled: 

g(X, X) = 0 (39) 

where X is the tangent vector to geodesics. Since the Sen theory does not 
specify which curve follows a massive body, this theory should be in that 
sense considered as incomplete. From (35) and (36) one readily concludes 
that when co = 0 Fermat geodesics coincide with autoparallels. 

5. BOUNDARY CONDITIONS 

As we have said, we assume the Lyra manifold to be piecewise of class 
C 4 and of class C 2 at the interface E. We call admissible any reference 
system belonging to this very class. Let Z be a smooth 3-space defined by 
equations 

x u = f , ( ~ , ,  r ~3) (40) 

where ~ are the coordinates on the interface. Now, for any chosen gauge 
function we can construct a reference system, being in fact an analog of the 
Gauss geodesic coordinates, taking the )7 ~ coordinate to be the unique 
parameter z on each of  the Fermat geodesics such that T = 0 on E and 
putting s  ~i, where i = 1, 2, 3. Let y~ compose admissible coordinates. 
From equation (36) one has the expansion 

y ' -  ~ "~T~p - 1 - - f  rP nt- -~ z2(G~t~ T'Te)Ip + " "  (41) 

where 

~dv 
T u = J - -  (42) 

dz 

Z # G~a = RF~a + -~ (6~ ~p + 6 ~  -- g,p ~") (43) 

and the subscript p indicates .the point of evaluation. Since the metric 
tensor and the gauge function are taken to be C ~, the above expansion is 
valid up to a second order, i.e., the terms written explicitly are independent 
of  the side of  3-space E that we approach as z ~ 0. It is evident therefore 
that the transformation between yU and 5~ is C 2 and the components of  the 
metric tensor expressed in Gauss coordinates as well as coefficients of  the 
Lyra connection are continuous across Z. Therefore we have proved that 
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for any gauge function the Gauss coordinates (in the above sense) are 
admissible. 

In the Lichnerowicz approach we start by introducing admissible 
coordinates such that the interface is specified by x ~ = 0, where x ~ may be 
any of x ". Then the O'Brien-Synge junction conditions may be written as 

[g~v], = [g~]2 (44a) 

Og,7] rog,7] 
 xOj ' = L x0j2 (44b) 

[T,~ = [T,~ (44c) 

Here the symbol [. ] denotes the boundary value of any quantity at the 
interface between two adjacent regions, i.e., [B]l<z~ = limxo~o_~+)B. In the 
general theory of relativity the O'Brien-Synge conditions are not inde- 
pendent. Let us therefore examine the junction conditions in the Lyra 
geometry more closely. Let us supplement the O'Brien-Synge boundary 
conditions expressed in the admissible coordinates; we shall call them 
O'Brien-Synge-Lichnerowicz boundary conditions in the Lyra geometry 
by demanding continuity of the displacement vector, i.e., 

[~b,]l = [q~,]2 (44d) 

Since the gauge functions are supposed to be C 2 at the interface, whereas 
the Lyra 1-forms co are only C ~ the conditions (44a)-(44d) are not 
independent. Indeed, by equation (B.3) it can be easily verified that if 
equations (44a), (44b), and (44d) are satisfied, so is equation (44c). In the 
normal gauge condition, (44d) leads to the equality of the Lyra forms co. It 
should be noted that though the same line element is associated with the 
displacement vectors q~ and -~b, the junction conditions remain un- 
changed. 

6. STATIC FLUID CYLINDERS 

Now we apply the foregoing considerations to the particular problem 
of the cylindrically symmetric solution to the Sen equations. The metric 
tensor that possesses the desired symmetry is 

g =e2V d t | 1 7 4  - e 2 ;  d(~| - e 2 "  d z |  (45) 

where #, 2, and # are functions of r. The Sen equations with a source term 
given by the hydrodynamic energy-momentum tensor 

T = T~,ve ~' | e v (46) 
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where 

T~ = diag( - p ,  - p ,  - p ,  p) (47) 

and p and p are pressure and energy density, respectively, may be written 
as follows: 

2'/~' + # 'v '  + v'2'  3 2 - ~ f l  = 8rcp (48a) 

, t2 t , ,2 3 2 /~"+v  +/~ + / ~ v  + v  +~ /3  =8rrp (48b) 

•'r + V t' "t" 2 ,2  -I- /],/Y' "1- Y ,2 "t- ~ / ~ 2  = 8 ~ p  (48c) 

2it .jr_ i..l,t ..[_ 2,2 + ,~,l.~/ .3 C Vt2 _~. ~ / ~ 2  = - -87~p  (48d) 

where prime denotes differentiation with respect to coordinate r. Following 
the method propounded by Evans (1977), the Sen equations (48a)-(48d)  
may be rewritten in the following simpler form in the present context: 

U" - ~'U' + 3(~" + e-2r + 3~2)u = 0 (49) 

4~z(5p - p) = (er -r (50) 

32rcp = (4' + 3//)(r  - v') - e-2r _ 3fl2 (51) 

with the functions u and ~ connected with the metric potentials by 

r = 2 + #  + v (52a) 

q = 2 - U (52b) 

t/' = e - ~ (52c) 

U = e 3v (52d) 

Since we have freedom in the choice of any two of  the relevant functions 
of the problem, in the latter we shall put ~ = In r, which considerably 
simplifies equation (49). Therefore we are looking for a regular solution 
expressible in terms of  known transcendental functions that lead to a 
physically reasonable energy-momentum tensor and, in view of further 
applications, we demand the radial pressure to vanish for a definite value 
of  r. 

It can be easily shown that for /32= k2qZrZq-2, the equation admits 
simple solutions in terms of Bessel functions. As an example, we consider 
more closely the case q = 2 with the displacement vector given by /~2= 
(4/9)22r 2, where the numerical factor 4/9 is introduced for convenience. 
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One therefore has 
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u = r C  2r 2 (53) 

where C stands for Bessel functions of a half order. Hence the line element 
that fulfills all the mentioned requirements has the following simple form: 

ds 2 =f2/3 dt  2 _ dr2 _ f - 1 / 3 ( r 2  d~b2 + dzZ) (54) 

where f = c o s  ~,r 2 + A sin 2r 2. The pressure therefore is 

4 
32xp = g [2~k - 22r2(1 + ~bz)] (55) 

with 

a cos 2r 2 - sin 2r 2 
~b = cos 2r 2 + A sin 2r 2 (56) 

It should be noted that p(0) = A2/24rc, and therefore A2 > 0. 
Putting in the r.h.s, of  (48a)-(48d)  p = p = 0 and solving the system 

of  resulting equations, one obtains the external vacuum solution, which is 
found to be (Matyjasek and Rogatko, 1992) 

g = p 2 ( r  + ro) al dt  | d t  - dr  | dr  - Q2(r  + ro) "2 d~b | d~b 

- R2 ( r  + r0) ~3 dz  |  (57) 

with the following constraints on the constants: 

and 

a l + a 2 + a 3 = 2  (58a) 

a l a  2 + aza  3 + a l a  3 = 3it 2 (58b) 

The displacement vector in this case has the form 

/~_ t/ (59) 
r + ro  

It can be easily shown from the definition of  the analog of the Gauss 
coordinates in Lyra geometry that the cylindrical coordinates are admissi- 
ble and therefore the O'Brien-Synge-Lichnerowicz junction conditions 
comprise the continuity of  the metric tensor and its first derivatives with 
respect to the r coordinate and continuity of  the radial pressure. These 
conditions should be supplemented by requirement of continuity of  the 
displacement vector across the interface. The relevant equations therefore 
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have the form 

PZ(b + ro)"' = fz/3(b) (60a) 

Q2(b + ro) "2 = f -  t/3(b) (60b) 

R2(b + ro) a3 = f -1/3(b) (60c) 

4 
al (b + ro) -1 = 3 b2~(b) (61a) 

2 2 
a2(b + ro)-I _ b 3 b2~(b) (61b) 

a3(b + r0 )-1 = _ 2  bZ~k(b) (61c) 
3 

2 
- - -  2b (62) 
b + r o  3 

The complete set of equations required for matching consists of (58a), 
(58b), (60a)-(62), and 

p(b) = 0 (63) 

In order for equations (61a)-(61c) to be compatible with equation 
(58a) one must set ro = 0. Substituting (61a)-(61c) into (58b) and making 
use of (63), one has 

4 ,~2b2 t/2 
= b--- / (64) 

and therefore this equation yields no more informations than equation 
(62). Consequently we have eight equations for ten constants. We may 
choose two of them, say Z and p(0), as parameters. This situation resembles 
the solutions studied by Marder (1958) and Bonnor (1979, 1982) in the 
context of general relativity and shows another important feature of 
globally non-Euclidean topology. The ratio of the proper circumference to 
the proper radius of the circle in the t = const, z = const slice, E(r), in the 
exterior metric is given by 

2~Qr,2/2- l (65) 

It should be stressed that though the matching conditions are not 
independent, we kept the full set of them for convenience. This dependence 
manifests itself explicitly in equations (62) and (64). 
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A P P E N D I X  A 

A differential k-form on the Lyra manifold in the natural basis has the 
form 

= og~r..,~ e m A �9 "" A e ~'k (A1) 

The exterior derivative of the k-form defined in such a way as to be doubly 
covariant may be written in the following form: 

d~=(DvW~l...Uk q-kdpog~, , . . .~k)e~Ae~"A' ' 'mePk (A2) 

where Dv =(l/z)O/SxL It could be easily shown that ddf~=O and the 
definition of the exterior derivative does not depend on the choice of 
reference system. 

Since the equality 

1 
&o(X, Y)  = ~ {X"D.  (co, Y )  - Y~'D~ (co, X)) - (co, [X, Y])} (A3) 

where 

and 

,U v [X, Y] = (X~'D~, yv _ r D~,X )D~ + X ~ rv[Df,, D~] (A4)  

1 

holds in the Lyra geometry for any l-form, one has the structural equa- 
tions 

1 
- T ~' = d e  ~' + co~ ^ e v (A6)  
2 

1 LR~ ~ e ~ ^ e~ = dm~ + o9~ ^ o9~ (A7)  
2 

where the connection 1-form in a normal basis has the following form: 

c0~ = LF~e~ (A8) 

Making use of (A7) and (A8), one has 

LR~,~ D r LF}~ -- Da LF~r -b LF~r LF}O L ~ 1 1 

(A9) 

This is exactly the Lyra curvature tensor given by equation (24). 
From equations (A7) and (A8) one can easily derive the Bianchi 

identities: 
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L ct L Lv, LR~ + I~V~ I-R~,~ + tV~ L R ~ ,  --  R ~ , ~ ,  - R~ ,~o~  - I~R~,~% = 0 

(A10) 

The Ricci tensor expressed in terms of the Riemannian connection and the 
displacement vector may be written as 

LR~ = ZI---~ R R ~ .  +1~(32Z R V ~  - R V ~  + g ~  

l 
+~ (3*~q~,, -- qb,,4~, + g,c~,qbaq~a) + ~ (g,c,~a~b ~ _ ~b~,q~p) (Al l )  

APPENDIX B 

The gauge-invariant analog of the Einstein-Hilbert action on the Lyra 
manifold as proposed by Sen (1957) is given by the following integral: 

So + SM = f LR)~4x/-~ d4x + f A z 4 ~ g  d4x (B1) 

where both LR and A are Lyra scalars and Z4~-gd4x is an invariant 
measure. 

The Sen equations that are valid in arbitrary gauge may be obtained 
from the variational principle by regarding the metric as the independent 
variable: 

6 
6g.V (So + SM) = 0 (B2) 

After necessary symmetrization they have the following form: 

l RR~,~ -- ~- gRg.~ + z(RV~cb. - g.. RV,~'~) +~ Z2(~. O,, -- gu~ ~ (I) ") 

3 2  1 ,~ 3 2 f  b +~ z (4),4).-~g,.4)~4) ) - ~  z ( ,4,v + 4), ~v - g,. ~or =-8~z2T,.. 
(B3) 

Making use of the formulas 

g . v  = ~. - 2 g . v  (B4) 

1 ~ In 22-] 
~. = 2" 4 .  4 (B5) 

z ~x; ) 

~.  = 2" O. -$ (B6) 
Z Ox" ] 

Guy =Guy +3).-2g., RVfl.~ RV/~/L-22-1g.v RVfl Rvfl.~--22 -~ RV, RV,2 (B7) 
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one can easily ob ta in  the Sen equat ions  by t r ans fo rming  back  the n o r m a l  
gauge Sen equa t ion  to the reference system with a rb i t r a ry  gauge funct ion.  
This  means  that  the Sen equat ions  are, as expected,  doub ly  covar iant .  

The  foregoing analysis  indicates  also tha t  a l lowing var ia t ions  with 
respect  to the d isp lacement  vector  tha t  in the no rma l  gauge results in the 
Einstein equat ions  leads in a rb i t r a ry  gauge to the conformal ly  t r ans fo rmed  
Einstein field equat ions .  
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